If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-25y-100=0
a = 1; b = -25; c = -100;
Δ = b2-4ac
Δ = -252-4·1·(-100)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-5\sqrt{41}}{2*1}=\frac{25-5\sqrt{41}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+5\sqrt{41}}{2*1}=\frac{25+5\sqrt{41}}{2} $
| 2s-8=+9s-7 | | 3(x+5)-12=9 | | $C=15n+85$ | | 4p•5=100 p= | | 8=a-4+a | | 7t+2=34t+375 | | 8=(a-4)+a | | 25×(9+4)=n | | 3(2+3t)=6t+24 | | 3x^2=115 | | D^2(D^2+4)=x^2 | | 0,2g−6=9 | | 5(x2-5)=R | | 8y+12-18y=1 | | 8y+12-18y=12 | | 2x+-14=5x+10 | | 3^10+4y=81 | | ?x25/8=2/7 | | 105=(5x)*4+25 | | 4x-3/2=9x-6/8 | | |5x-3|=4-2x | | 2x+1,5x–20=10+0,5x | | 10(m-2)=3(m+1) | | 5x-4=2(-3+7)+3 | | 2/x=35/105 | | 3x+9=4x-29 | | -3x-5=25+2x | | 12x-8=2(8x-4) | | 5t-14=21/1 | | 8k+1=k+15 | | x−18=22 | | 6/x=288 |